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Page 5, column 1, line 32: Insert the following after equa-
tion (19): This expression is similar to Serrin's form

of the Bobyleff-Forsytbe equation (Serrin, l.: Math-

ematical Principles of Classical Fluid Mechanics.

Encyclopedia of Physics, Vol. VIII/l, Fluid Dynam-
ics I, S. Flugge and C. Truesdell, eds., Springer-

Verlag, 1959, p. 251):

D:D = ½_2 + div_

where

D= + and a=--D- i-

For incompressible, viscous flow:

Page 7, column 1, fine 16: Insert the following after equa-

tion (34): Equation 34 is a special case of a more

general result obtained by Rayleigh, who extended

Helmholz's work (Lamb, H.: Hydrodynamics. Sixth

ed. Dover, 1945, p. 617). From a perturbation analy-

sis, Rayleigh obtained the minimum dissipation
condition:

Page 8, column 2, line 39: The phrase "the x-derivatives"

should be "the _-derivatives".

Page 9, column 1, line 4: The denominator of the second

term in the second line of equation (48) should be

squared, not cubed; the calculation used the correct

expression. (See also other corrections to equa-

tion (48) below.)

Pages 9-10:. Tim symbols x and y should be replaced with

tim symbols _ and _ in several equations (note that u

and v are velocity components in the airfoil coordi-
nate frame). Correct as follows:

_(u + iv)

{2a2e ia 2iksasin(a)] I z 2

('-+s)2

+ U[e -ia a2e ia 2iksa sin(a )(z+S)r+ (z+S)

(48)

V2V = VH, H is any scalar

Rayleigh stated that this condition was exclusive;
flows that did not satisfy the condition were not char-

acterized by minimum dissipation. Onsager later
extended the minimum condition to all steady, linear

processes that satisfied the second law of thermody-
namics. Rayleigh used examples of parallel channel

flow (parabolic profile) and rotational flow, as dis-

cussed by Lamb, to illustrate his minimum condition.

Lt J J

_u _v _v au

(49)

(5O)



2]
(51)

--(vu. ½PU cCv .
Av

]
Av

Av (56)

Page 9, column 2, line 9: After the word "points." insert

the following: An inverse cubic approximation for

dissipation was used in the leading edge (LE) and

trailing edge CTE) regions, with a grid spacing of 0.02

in the LE region (-2.19 < _ < -1.81, -19 < 1] < 0.19)
and in the TE region (1.81 < _ < 2.19, -19 < _ <

0.19). The dissipation approximation was integrated

analytically in the _ direction and numerically in the

TIdirection.

Page 10, column 1, lines 5-14: Insert a period after "zero"

in line 5, and delete "and results in a net drag...

which is drag times freestream velocity."

Page 10, column 2, line 26: Insert the following: For all
the examples of incompress_le and fully irrotational

flow, the net drag is zero and the dissipation is due

entirely to thework of the moving-surfaceboundary-
layer conlrol system (WBI.E). This quantity repre-

seats the minimum powez expended by an ideal

airfoil The drag of an actual airfoil can be related to

this quantity by defining a boundary layer control

elTtciency:

_tBLC =

(DU + _l._)_a 1] equal lift, velocity

Page I0, column 2, line 32: Insert the following: The

effective drag coefficient CDE as presented in the text

represents a power loss coefficient, indicating

boundary later control power only for the airfoil in

fully irrotational flow and drag plus boundary layer

control power for airfoils in rotational flow.
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NOMENCLATURE

surface of body subjected to drag force L

surface bounding control volume L

circle radius for streamlined-airfoil flow 1

speed of sound in undisturbed fluid M

constant of integration Mj,Mk

constant of integration fi

effective-drag coefficient PT

airfoil chord p

wave speed

airfoil drag p'

deformation-rate tensor

unit vector in the 0 direction, cylindrical R
coordinates

Rc

sum of terms in momentum equation
Rfi

similarity function and its derivatives
r

auxiliary similarity function and its derivatives

jet nozzle height rLE

cross-stream integral of velocity divergence rTE

cross-stream integral of total dissipation r0

cross-stream integral of mean pressure S

cross-stream integral of squared mean vorticity s

cross-stream integral of the mean square of T

fluctuating vorticity
t

bulk viscosity coefficient
t/c

vortex strength factor
0

coefficient of thermal conductivity

Um

torque on a cylinder

airfoil length

wall length

channel-wall running length

sum of terms in mass equation

Mach numbers in j and k directions

unit vector normal to surface

torque power absorbed by rotating cylinder

pressure

time average (mean) of pressure

fluctuation in time of pressure

heat-flow vector

airfoil Reynolds number

critical Reynolds number

jet Reynolds number based on jet half-width

radial coordinate, cylindrical coordinate

system

airfoil leading-edge radius

airfoil trailing-edge radius

cylinder radius (vortex-core radius)

system entropy

specific entropy (entropy per unit mass)

temperature

time

airfoil thickness-to-chord ratio

freestream velocity vector

maximum jet velocity
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U,V,W

ui,uj,uk

uo

V

%

W

WBLC

W

x,y,z

xi,xj,xk

Z

(t

t_

F

,is

AeS

,_iS

51/2

£

11

velocity components, Cartesian coordinate 0
system

tensor velocity components _,

tangentail velocity component kt

velocity vector p

control volume

channel flow rate _r0

complex potential X'jk

boundary-layer-control system power •

channel width O*

position components, Cartesian coordinate
system

4,I
tensor position components

complex position, not transformed t_R

Lagrange multiplier, channel flow
¢

angle of attack
cp

wave number

circulation, cylindrical vortex tpi

rate of change in the system entropy

9r
contributions to/_S from external sources

contributions to/_S from internal sources

circle offset distance o

Kronecker delta co

jet half-width

disturbance amplitude co'

complex position, transformed coi

similarity parameter t,0jk

angular coordinate, cylindrical coordinate
system

second coefficient of viscosity

first coefficient of viscosity

density

fluid stress

shear stress, cylindrical vortex

viscous stress tensor

viscous dissipation function

dimensionless dissipation function

modified dissipation function

modified dissipation function for incompress-
ible flow

radiative component of modified dissipation
function

unsteady, complex disturbance stream function

complex amplitude of the disturbance stream
function

imaginary component of the amplitude of the
disturbance stream function

real component of the amplitude of the distur-
bance stream function

cylinder rotation rate

complex frequency

vorticity

time average (mean) of vorticity

fluctuation in time of vorticity

imaginary component of complex frequency

rate-of-rotation tensor

iv



SUMMARY

The objective of this report is to examine recent developments in the field of nonequilibrium

thermodynamics associated with viscous flows, and to relate-these developments to the understanding

of specific phenomena in aerodynamics and aeroacoustics. A key element of the nonequilibrium theory

is the principle of minimum entropy production rate for steady dissipative processes near equilibrium,

and variational calculus is used to apply this principle to several examples of viscous flow. The paper

begins with a review of nonequilibrium thermodynamics and its role in fluid motion. Several

formulations are presented of the local entropy production rate and the local energy dissipation rate,

two quantities that are of central importance to the theory. These expressions and the principle of

minimum entropy production rate for steady viscous flows are used to identify parallel-wall channel

flow and irrotational flow as having minimally dissipative velocity distributions. Features of

irrotational, steady, viscous flow near an airfoil, such as the effect of trailing-edge radius on

circulation, are also found to be compatible with the minimum principle. Finally, the minimum

principle is used to interpret the stability of an initially laminar, parallel shear flow with respect to

infinitesimal and finite amplitude disturbances; the results are consistent with experiment and with

linearized hydrodynamic stability theory. These results suggest that a thermodynamic approach may be

useful in unifying the understanding of many diverse phenomena in aerodynamics and aeroacoustics.

INTRODUCTION

The crucial role thermodynamics plays in fluid

mechanics and related disciplines such as aerodynamics is

indicated by the importance of the perfect gas law and the

energy equation, which, together with the principles of

mass and momentum conservation, form the basis of the

theory of fluid motion. The gas law and the energy equa-

tion can be formulated for a system of fluid particles in

thermodynamic equilibrium, a system devoid of spatial or

temporal variations in material properties. For compress-

ible flows, such as flows containing shock waves, the

equilibrium approximation is still accurate locally because

of the large number of particles in the smallest regions of
interest.

Spatial and temporal variations in the fluid properties

may become significant to the thermodynamic description

of the system when the variations in thermal energy are

independent of the variations in fluid pressure, such as in

low-speed flow, or when the variations in fluid properties

with time are large. When the flow is steady, the theory of
linear nonequilibrium thermodynamics leads to several

useful concepts, including the principle of minimum

entropy production for near-equilibrium processes and the
subsequent formulation of variational methods consistent

with this principle. In certain unsteady flows that are

thermodynamically far from equilibrium, such as Benard

convection, the heat transfer and entropy production can
be maximized.

Variational principles associated with energy dissipa-

tion of a viscous fluid have been applied with varying

degrees of success. In the field of hydrodynamics,

Helmholz proved that flow with negligible inertia forces

is characterized by a minimum of viscous dissipation

(ref. 1). Tadmor defined a minimum entropy principle in

the context of stable numerical solutions of the gas

dynamics equations (ref. 2). For thermal convection and

turbulent flow in channels, Malkus proposed a theory

based on the arguments that the smallest turbulent scales

are marginally stable, and the mean and turbulent charac-

teristics of the flow are determined by the condition that

the energy dissipation is maximized (refs. 3,4). Reynolds

and Tiederman contended that extrema of the dissipation

function are not generally compatible with the conserva-

tion laws, and they found poor agreement between an

eddy viscosity simulation of turbulent channel flow and

Malkus' prediction of the association of maximum dissi-
pation rate with neutral stability of the mean flow (ref. 5).

Gage et al. argued against the existence of a general

thermokinetic variational principle (ref. 6).

These efforts raise questions about (1) whether a gen-

eral variational principle is applicable to problems in fluid

mechanics, (2) which fluid property is to be extremized,

and (3) whether a maximum or minimum of the property

should be expected. These issues can be clarified by the

review that follows of the results of studies of nonequilib-

rium thermodynamics. For a full discussion of nonequilib-

rium thermodynamics, the reader is referred to the

treatises by Yourgrau et al. (ref. 7) and de Groot and
Mazur (ref. 8).

Thermodynamic equilibrium, characterized by the

absence of gradients of state variables or kinematic



variables,correspondstoastateof zero entropy produc-

tion and maximum entropy. Linear nonequilibrium

processes, studied by Onsager (ref. 9), are associated with

nonzero gradients of system properties and are character-

ized by minimum entropy production or energy dissipa-

tion. This characterization specifies that the entropy

production can be evaluated at every point in the fluid,

and that the spatial distribution of this quantity is such that

the volume integral of the entropy production is smaller

for the observed spatial distribution than for any other

possible distribution. The volume integral of the entropy

production is also described as stationary since a small
deviation from the observed distribution results in a vari-

ation of the volume integral that is on the order of the

square of the deviation. The linear description applies if

the generalized thermodynamic fluxes (such as heat flow

or fluid deformation) are linearly related to the general-

ized thermodynamic forces (such as temperature gradient
or viscous stress). Many near-equilibrium processes are

accurately characterized as linear. Minimum entropy

production for these processes can be associated with the

stability of stationary or time-invariant states in the pres-

ence of fluctuations in one or more of the thermodynamic
forces or fluxes.

Prigogine noted that the entropy production charac-

teristics for nonequilibrium processes that are nonlinear or

far from equilibrium can be quite different than those

observed for processes close to equilibrium (ref. 10). Non-

linearity is generally associated with the generation of

chaotic states from initially determinate conditions, such
as the transition from laminar flow to turbulence.

Prigogine (ref. 11)and Prigogine and Stengers (ref. 12)

also demonstrated that nonlinearity and processes that are

far from equilibrium may give rise to global organization

from an initially random field, and they characterized

such processes as the evolution of dissipative structures.

For example, the problem of convective heat transfer can

be characterized by the maximum heat transfer and

entropy production that is associated, in some circum-

stances, with the appearance of orderly Benard convection

cells (refs. 13-15). Lugt commented on the evolution of

discrete vortices in shear flows as another example of

these dissipative structures (ref. 16). Ziegler proposed that

rates of entropy production and energy dissipation are

maximized for processes far from equilibrium (ref. 17).

These results suggest that maximum energy dissipation

may be associated with some processes far from equilib-

rium, or with the transition of a system between equilib-
rium states.

of dissipative structures in fluid flow, and pressure-wave
source regions may be examples as well. The first goal of

this study is to formulate the dissipation function in terms

directly related to these phenomena. In this context, we

will derive in the next section an alternative expression of

the dissipation function; its terms are associated with the

processes of irreversible compression, vorticity, and con-

vected wave propagation of density disturbances.

Many references cited in this discussion refer to the

steady motion of a viscous fluid as an example of a linear,

nonequilibrium process for which entropy production

should be minimized. The second goal of this study is to

present some specific examples of this concept. Finally,

we will compare the hydrodynamic and thermodynamic

stability characteristics of a viscous, parallel shear flow.

DISSIPATION FUNCTIONS FOR A NEWTONIAN

FLUID

Entropy Change in a Fluid Particle System

Yourgrau et al. studied the rate of change of entropy

in an open system that allows the transfer of mass and

energy across system boundaries (ref. 7). For such sys-

tems, the rate of change of the system entropy, ,kS, is

composed of contributions from external and internal
sources:

/_S = ,_eS +/kiS (1)

The first term, /keS, represents the entropy exchange

across the system boundaries by mass or heat transfer. It

may be positive or negative depending on whether

entropy, is transferred in or out of the system. The second
term, AiS, represents the entropy production within the

system boundaries caused by irreversible processes, such

as heat conduction and viscous dissipation of energy.

According to the second law of thermodynamics, it is

always positive.

If we consider only viscous and thermal conduction

effects, we can express equation (1) in terms of integrals

over the system volume, V, bounded by the system
surface, A:

The dissipation function in its conventional form
consists of terms formed from velocity-field gradients.

Vortices were cited by Lugt in reference 16 as examples



"_'tIJ'I P sdv

V

,ks

=-II_'fida-.[Ipsfi'hdaT

A A

X;s

+ IIf(_T q_2T/dv

v

_,_s

(2)

The viscous dissipation function, *, is the inner product

of the viscous stress tensor, "t'jk, and the deformation-rate

tensor, djk.

The surface integrals may be changed to volume

integrals by using the divergence theorem. Since the

equality must hold for arbitrary volumes of integration,

the integrand of the volume integral satisfies the equality

aps -V.psg-V._+ * _.VT
a t = T T T 2 (3a)

Applying the equation of mass conservation gives

Ds _ * _.VT
p_-_- = -V.T+ T T 2

(3b)

We now restrict our attention to a Newtonian fluid, in

which the viscous stress is linearly related to the deforma-

tion, or strain, rate,

au i _ - _ au i .
l:'jk = 2itdjk + A-_i Ojk = 2itdjk + K_ii 0jk (4)

where

2

K = _. + _ It (5a)

=±( au__t+auk]djk 2 ax k axj ) (5b)

- 1( au._._j+ au___.kk] 1 au i

djk = 2 k axk axj )-'3_ixi jk (5C)

and the heat flow is linearly related to the temperature

gradient,

= - k T V T (6)

The dissipation function can be written in Cartesian
coordinates as

+ 2(av_2 + 2(o3w) 2 (aV aU"_2*=It 2(-_) 2 (,ay) _,_-) +k_-+_ ")

raw ave: 'au av 2
+t-g+aO+(a + j t

(7a)

or

+2(av]2+2(aw'/2 (av au] 2* = It 2(o-_xU-)2 tray j i,,_z ) + k_- + _)

(aw av_2 2(3u av

-at) -j j

.(au av aw'_2

+ +--at;
(7b)

Equation (3b) for a Newtonian fluid can be written as

Ds * kTV2T

p-_- = -T--I T2 (8)

Since shear, dilatation, and heat transfer can occur inde-

pendently, the second law of thermodynamics requires

that the coefficients It, K, and kT each be positive. The
second law of thermodynamics can be expressed either

globally (an isolated system must exhibit zero or positive
change in entropy) or locally (the viscous dissipation

function must be positive everywhere and heat flows only

from hot to cold regions). In the remaining discussion,

entropy changes caused by heat conduction will be

neglected, so the entropy production will be considered to

be related only to the energy dissipation caused by
viscous effects.

Alternative Forms of the Dissipation Function

The dissipation function can also be expressed in

terms of physical mechanisms that dissipate energy. Using
Cartesian tensor notation with the summation convention

on repeated indices, Ziegler (ref. 17) wrote the dissipation

function of equation (7a) in the form

* = _,djjd_+ 2It djkdjk (9)



whered-k is thefluid-deformation-rate,or strain-rate,
tensor,dJefinedbyequation(5b).Jeffreys(ref.18)rewrote
equation(9)as

3uj _uk [1 3uj _U_k]• =_._jj _x k kit -_(OjkO.)jk+2_k _xjJ (I0)

where (Ojk is the rate-of-rotation tensor, defined by

C°Jk t axj ax k
(11)

The last term in equation (10) appears in several

aeroacoustic wave equations, such as that derived by

Phillips (ref. 19). Horne and Karamcheti (ref. 20) have

derived a different formulation of the dissipation function

by adjoining functions of the conservation equations to

the dissipation function of equation (10):

DM
_ = O- 21.t{V. F----D-i- + M V. fi } (12)

The symbols M and F refer to the sums of terms in the

conservation equations of mass and momentum, respec-
tively. They are defined by

- ap _j C)UjM- _-_-+ uj +p_j (13)

and

_=p_tk +puj au k ap a'_'jk
"_j+ aX k axj

(14)

where

( auj _u k ) auj

X'Jk= l'tL_-"_k+ axj )+_Jk_'_jj
(15)

For a fluid free of sources of mass or momentum,
M=0 and F=0.

Expanding the terms of equation (12) individually,
we obtain

A B C

V.P='aP au k .- a (au k'_ . Op .auk

D

auj au k +puj _ (aUk] a2+%xk axj _--_;t_---_-k) p+axkax k

a2"C'jk
(16a)

aM a2p auj ap

-"_= at 2 bt axj

-E

ap%
uj at L axj ) ot axj

" a(auji (16b)

-c

_M a (ap']" u auj Op"
-Uk =-Uk kaXk

a2p

UJuk Oxjaxk

apauj ±¢auji
-Uk aXkaxj PUkaxk l,axj j

(16c)

E F

MV.fi -ap aUk -l-ujap auk +paUj au k
at ax k axj axk axj ax k

(16d)

When terms are canceled as indicated, equation (12)
becomes

a 2 (auj_ . auj aU k•
2IX (, a 2 p o_2p

P taXkaXk UjUk axjaxk

a2p) I.t+ "2"COJk(OJ k

a2p

2 u k ax k at

(17)

This expression, which is exact for a Newtonian

fluid, accounts for three important mechanisms of energy

dissipation in real flows: (1) irreversible expansion or

compression of the fluid, (2) the generation and radiation
of sound or shock waves, and (3) the generation of vortic-

ity. The modified dissipation function of equation (17) is

equal to the original dissipation function if the

4



conservationequationsof massandmomentumareeach
satisfied,so extremaof the volumeintegral of
equation(17) shouldalso be compatiblewith the
conservationequations.Althoughequation(17)was
derivedin amannersimilarto themethodof imposing
equality constraintson variationalproblems,the
conservationequationswerenotadjoinedindependently,
sofurtherconsiderationofthisissueisnecessary.

Theradiativetermsin equation(17)canbefurther
manipulatedtoyieldaconvectivewaveoperatoractingon
thedensityfield:

: 7-

o+ °2°
-MJ Mk OxjOxk ao _xkOt a g -at)j

These expressions for the dissipation function

(eqs. (7a), (19)) will be used in the following sections to

examine several simple flows, to determine if minimally

dissipative distributions correspond to observed flows.

INCOMPRESSIBLE-FLOW DISTRIBUTIONS

The dissipation functions derived in the previous
section can be used to determine whether simple, steady,

viscous flows may be characterized by velocity distribu-

tions that generate stationary or minimum values of the

net dissipation, as predicted by the theory of linear,

nonequilibrium thermodynamics. Examples of such flows
to be considered in the following sections are flow in a

parallel-wall channel, unconstrained viscous flow, flow

near a rotating cylinder, and flow near a streamlined
airfoil.

Parallel-Wall Channel Flow

where a0 is the speed of sound in an undisturbed fluid,

and Mj and Mk are the Mach numbers in the j and
k directions. The first term occurs in Lighthill's acoustic

stress tensor (ref. 21), and the second term, a convective

wave operator for the density, is identical to the convec-
tive wave operator for acoustical disturbances in shear

flow (ref. 22). Flows that generate and radiate acoustic

energy have nonvanishing levels of viscous dissipation in

the aeroacoustic source region of the flow. (Dissipation in

the propagation region caused by viscosity and relaxation
was studied by Meixner, as discussed by de Groot and

Mazur (ref. 8).) The dissipation function should be posi-

tive everywhere, although the terms associated with
outward acoustic radiation are negative, since energy is

radiated away from, rather than deposited within, the

aeroacoustic source region.

For incompressible flow, the dissipation function of

equation (17) reduces to

_i =-_21"t V2 P + t-t0")2 (19)
P

The squared-vorticity term, I.tt.02, which also appears in

equation (10), is similar to the quantity enstrophy, which
is one half of the vorticity squared and is of significance

in atmospheric flows. Some studies have suggested that
this quantity is minimized for certain atmospheric vortices

(ref. 23). The squared-vorticity term is also similar to the

energy dissipation in homogeneous turbulence, given by

Hinze (ref. 24) and Tennekes and Lumley (ref. 25) as the

viscosity times the mean square of the fluctuating

vorticity.

We will examine parallel channel flow, or Poiseuille

flow, as a simple illustration of the method to be used

throughout this discussion. For this flow, the streamwise

velocity, u, is a function of the cross-stream coordinate, y,

only. The viscous dissipation function given by equa-

tion (7a) reduces to

(20)

The net dissipation per unit length per unit width is given

by

_1 f+dv=_tSy; 2/3u/2_,oyjlw dv dy
(21)

where 1 and w are the channel-wall running length and

channel width, respectively. The flow rate per unit width

through the channel is given by

+,c= u dy
1

(22)

Possible extrema of the integral in equation (21), sub-

ject to constant channel flow rate, are found as solutions

of the Euler-Lagrange equation,

3u 3y _ =0 (23)



where

, bu
u = _ (24a)

(24b)

Here, o_ is a Lagrange multiplier adjoining the integrand

of the flow-rate constraint to the extremizing function. For

this example, evaluation of the Euler-Lagrange equation

yields the expression

(25)

The net dissipation is stationary for the parabolic profile

ct 2
u(y) = -_-ffy +By+C (26)

where B and C are constants of integration. This profile

corresponds to a minimum of the dissipation function,

according to Legendre's test (ref. 26), since

_2 f

_9u'O u; = +2 (27)

Unconstrained Viscous Flow

The preceding example incorporated a constraint on

the net flow rate. In addition, the equation of mass was

satisfied by the specified restrictions on the velocity field.

We now consider general incompressible viscous flows

that satisfy no constraints other than the integrability and

differentiability requirements of a variational analysis.

The dissipation function of equation (7a), when sim-
plified for incompressible flow, becomes

• = _[2u2 +2v_ +2w2 +(Vx + Uy) 2

+(Wy +v z )2+(u z +Wx) 2] (28)

where the subscripts x, y, and z refer to partial differentia-
tion. We will consider various circumstances under which

the integral of the dissipation function (the net dissipation)

over a flow region may be stationary.

The net dissipation may be expressed in integral form
as

V

=flfO(Ux,Uy,Uz

V

,Vx,Vy,Vz,Wx,Wy,Wz)dx dy dz

(29)

Velocity distributions that generate a stationary or mini-

mum value of the net dissipation must satisfy the Euler-

Lagrange equations (ref. 26). For three dependent vari-

ables (u, v, w) and three independent variables (x, y, z)

these equations are

_u _ t_--Cj-_t, _-aT_)- _ t_---Cj=° (30a)

-_ _xt,_vx)_y!_vy)-_C_--_) =° (30b)

_w _-xt_-_-xj-_t_-_rj-_t_--_z):° (30c)

No boundary conditions or other constraints have been

imposed, although such constraints may be adjoined with

Lagrange multipliers, as in parallel channel flow. The

terms in equation (30a) are evaluated as

_---_-_= 0 (31a)
bu

Oux = g_-x' _xx_--_'xJ =41"l'ox 2
(31b)

a,_ _ (0v 0u
OUy - 7t'tt_x-x + _y J; Oyt,_Uy) t 0x_)y + _--"_J

(31c)

_Uz:_'!,g+_); _zz(O_z ): 2 (o2u O2w_ +_--_-;
(31d)

Summing these terms and rearranging give the Euler-

Lagrange equation for u,

6



2rtV2u + 2_t_-_-(v. _) = o (32)

Adding the Euler-Lagrange equations for the three com-

ponents gives the vector equation

2 v2a +2 v(v. =o (33)

The presence of the second term in equation (33) indicates

that velocity distributions that generate stationary values

of the net dissipation do not necessarily satisfy the con-

servation equations, a concern raised by Gage et al.

(ref. 6) and Reynolds and Tiederman (ref. 5). Extrema
could be constrained to satisfy the conservation equations

by adjoining the equations to the dissipation function with
influence functions. Instead, we impose conservation of

mass by setting the second term equal to zero. The net

dissipation is then stationary for velocity distributions that

satisfy

V2fi = 0 (34)

This condition is equivalent to the vanishing of the
viscous-force vector term in the momentum equation for

incompressible flow,

Dfi
= -Vp + p.V2fi (35)P-D-i

This condition is also equivalent to a zero value for the

curl of the vorticity field throughout the flow; this can be

seen with the vector identity

V2_= V(V. FI)- V x (V x fi) (36)

The dissipation function is zero for the case of uni-
form rotation, since the fluid deformation is zero. The net

dissipation is also stationary for velocity distributions that
are irrotational. The viscous force on a volume element of

fluid is proportional to the divergence of the stress and is
zero for irrotational flow. However, the viscous stress,

and hence the dissipation, are not generally zero for

regions in a viscous fluid where the flow is irrotational.

An analogous situation is found in the dissipative process

of steady heat flow within a conducting solid, where the

irrotational heat flux, _, is proportional to the gradient of

the scalar temperature, T. In the following sections, we
examine two familiar flows with regard to their descrip-

tions as irreversible thermodynamic processes.

Flow Near a Rotating Cylinder

The incompressible flow near a hollow rotating

cylinder is a special case of flow with regions of solid
rotational and irrotational motion. It is described in cylin-

drical coordinates by

= ue(r)_ 0 (37)

For this axisymmetric tangential flow, the viscous dissipa-

tion function of equation (7a) reduces to

O(r)=l.t(Ou__0 u0 12
_, 3r r

(38)

and the Euler-Lagrange equation for the net dissipation

reduces to the Euler equation,

2 d2u0 + r duo - u 0 = 0 (39)
r dr'---"_ dr

The two solutions are

u 0 0, r, r -1 (40)

These two solutions represent respectively the rotational

core inside the cylinder and the potential region of a

columnar vortex outside the cylinder. Both solutions rep-

resent minimum dissipation conditions, as in the channel
flow.

Integrated contributions to the overall dissipation rate

in the field of a cylinder with radius r0 and circulation F

are given in table 1. As can be seen, the net dissipation in
the rotational core is zero, while the irrotational outer flow

has a net positive dissipation. The tangential acceleration

Table 1. Velocity distribution and net dissipation in a

steady vortex

Region u0 (r) IIO rdr d 0

Fr

0<r<r 0 -+2gr° 2 0

F gF 2

ro<r<_ 42_r + gr 2



iszerothroughouttheflow,exceptattheboundaryatr0.
A steadytangentialstressis requiredat this location
(providedbya thinrotatingcylinder,for example)to
maintainasteadyflow.Thenetdissipationin theouter
regionis identicaltothetorquepowerabsorbedbythe
rotatingcylinder,sincetheshearstressatthecylinderwall
isgivenby

_r0(r0)= k.Or r r0 _r2
(41)

The cylinder torque is then given by

2_

L =-fCro(ro) ro2 dO= 2_tr
o

(42)

This, combined with the cylinder rotation rate,

._ ue(r0)_ r
r0 2re r2

(43)

gives the torque power absorbed by the rotating cylinder,

(44)

In this example, the stationary dissipation is associ-
ated with either uniform or irrotational motion, as in

unconstrained viscous flow. Yates and Donaldson

(ref. 27) and Greene (ref. 28) have also considered energy

dissipation in vortices in their analyses of induced drag.

Flow Near a Streamlined Airfoil

Another important example of viscous irrotational

flow is the low-speed flow of a real fluid over a stream-

lined object such as an airfoil. At a sufficiently high

Reynolds number, in the absence of separation, the
viscous-flow effects are confined to a thin boundary layer

near the surface, a fact first utilized by Prandtl in his

boundary layer theory. As yon Karman noted in 1941

(ref. 29):

One of the most surprising developments in
modern fluid mechanics is the successful

application of the theory of potential motion of

ideal incompressible fluids to the actual flow

of air around airfoils and streamlined bodies. A

few decades ago the potential theory was con-

sidered a purely mathematical discipline. Later

it was understood that it might be a valuable

guide for understanding of the general laws

which govern the lift, moment, induced drag,

etc. of airfoils. However, as aerodynamical

design became more refined, it was found that

the quantitative predictions of the theory are of

a remarkable accuracy in spite of its idealized

conception.

The high degree of correspondence between associ-

ated viscous and inviscid flows implies that for many

flows, viscous effects are confined to a thin layer adjacent

to a moving surface, and that large regions of the real flow
sufficiently far from boundary surfaces are irrotational. In
this section we evaluate the distribution of the viscous

dissipation function in the vicinity of a streamlined airfoil.

The airfoil flows investigated in this study were gen-

erated by mapping an offset circle in the z-plane to a

streamlined airfoil shape in the k-plane with the confor-
mal transformation

1
g = z + - (45)

Z

The radius of the circle in the z-plane is a, centered at

z = --_. A sharp trailing edge is generated if a = 1 + & A

round trailing edge is generated if a > 1 + 5. The circle in

figure 1 maps to an airfoil with a chord length of approx-

imately 4. The complex potential, W, caused by a doublet,

a variable-strength vortex, and a uniform stream of speed

U inclined at angle _ can be derived from the expression

given by Abbot and von Doenhoff (ref. 30),

W = U((z + _5)e-ia a2 is+_-_e + 2iksa sin(tx )

x In (46)

The vortex strength, kS, is equal to 1 when the separation

streamline departs from the airfoil trailing edge, and

ks = -1 for stagnation at the airfoil leading edge. For

sharp trailing-edge airfoils in an inviscid fluid, the Kutta

condition requires that kS = 1 to avoid infinite velocities

at the trailing edge. The velocity and the x-derivatives of

the velocity components are given by
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dW dz
u+iv -

dz dg

" a2eim 2iksasin(_)l(z21(47)=Ue-'" (zT_2, (z+_) ]tz2-,)

_x t, dz ;t, dgJt,_x;

LL(z+8)-')(z+_)_ Jt(z=-l)J

[ -+U e -i_ a2ei_ 2iksasin(_)

(z + _)2 + (z + 8)

v-,)'
(48)

For an incompressible, two-dimensional flow, the dissipa-
tion function reduces to

"=l'tr2(°_u'_2L_,c)x) +2(3v/2_,3y)+/_'_+"-_) 2] (49)

If the flow is irrotational as well as incompressible and
two-dimensional, then

3u 3v 3v 3u
- - (50)

3y 3x' 3y 3x

so the dissipation function becomes

41.tF(3u _2 + (3v/21
O(x,y)= Ltax; t_x)j

(51)

The dissipation can be nondimensionalized using the

chord, the viscosity, and the speed:

c20
O*-

_tU 2
(52)

The dissipation function thus obtained was evaluated

on a square grid with a spacing of 0.10 between grid

points. Figure 2 illustrates the streamlines and contours of

constant dissipation in the vicinity of a Joukouski-type

airfoil, with boundary layers excluded. The irrotational

flow model corresponds to a high degree to the associated

real flow, provided the Reynolds number is sufficiently

large and no regions of separated flow are present. The
irrotational model is even more accurate if the real airfoil

is provided with a moving-surface boundary-layer-control
system that can adjust the tangential velocity distribution

over the airfoil surface to match the distribution predicted

by the inviscid theory. This method was used by Yates to

study unsteady airfoil flow (ref. 31). The thin boundary

layer itself is a good approximation of such a control

system.
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As mentioned in the section on unconstrained viscous

flow, the viscous force per unit volume in the fluid, which

is proportional to the divergence of the stress, is zero

throughout the irrotational region. The viscous stress,

however, is not zero and results in a net drag on the airfoil

even if the boundary layer is absent (assuming the no-slip

condition is satisfied with a moving-surface boundary-

layer control). This drag can be computed by integrating

the streamwise component of the dot product of the
viscous stress with the outward normal vector around a

control surface such as the airfoil surface. The drag can

also be found by using the energy equation; the volume

integral of energy dissipation can be set equal to the drag

power, which is drag times freestream velocity.

Lagerstrom derived an expression for the drag power DU

(ref. 32),

DU = _p _u' fida- j',_ •/u- 0/" fida

Av Av

+ f_G :V_dv +_o •ft. fida (53)

V A B

where

Av is the surface bounding the control volume

AB

0

is the surface of the body subjected to drag force

is the freestream velocity

V is the control volume

o is the fluid stress

The terms on the right-hand side of equation (53)

account for, in order, (1) net kinetic energy transfer out of

the control volume, from wakes or trailing vortices,

(2) stress work on the control surfaces, (3)stress work
within the control volume, and (4) stress work on the sur-

face of the body subjected to the drag force. The last term

is zero if the body surface is motionless, but nonzero if the

surface is moving. For the case of two-dimensional flow

with negligible wakes or vortex, this expression can be

simplified to

gt'g

DU+WBL C = Ill(pV.fi+_)dv

V

(54)

where "qVBLC is equal to the negative of the fourth term

of equation (53). The right-hand side of equation (54) is

equal to the third term of equation (53). For incompress-

ible flow, the effective drag power per unit length,

(DU+WBLc)/L, is the surface integral of the
dissipation,

j" OdAv = (DU + VgBLC)/L 1 3=_-pU CCDE

Av

= 4_t_,_[(-_/2 +(_v'_2]Av _--_j j dxdy

(55)

where c is the airfoil chord and L is the airfoil length.

This gives an expression for the effective drag coefficient,

where the Reynolds number is R = pUc/g. The variation

of CDE with R for two zero-incidence airfoils that have

different thickness ratios is compared in figure 3 with that

of a flat plate that has boundary layers on both sides.

10
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Figure 4. Variation of effective-drag coefficient with angle of
attack, R = 1000.

The variation of the effective-drag coefficient with

angle of attack is shown in figure 4 for airfoil thickness-

to-chord ratios of 0.1 and 0.2. The effective-drag coeffi-
cient is minimized at zero incidence and increases as the

square of the incidence angle, with the higher rate of
increase associated with the airfoil that has the lower

thickness-to-chord ratio. The region of highest flow curva-

ture and dissipation is situated at the airfoil leading edge,

as seen in figure 2.

Both the trailing-edge velocity and the net dissipation
obtain infinite values if the airfoil circulation is not suffi-

cient to maintain the separation streamline at the airfoil

trailing edge. The association between net dissipation and

trailing-edge streamline location can be examined further

rTE/r LE

(a) _ _ 1.0

Cb> 0.5

(c) _ _ 0.25

f

(d) _ t> 0.1

(e) _ _ 0.05

Figure 5. Airfoil section profiles with rounded traifing edges;
rTE/Cis (a) 0.0068, (b) 0.0045, (c) 0.0027, (d) 0.0013, (e) 0.0007.

by considering the hypothetical case of continuously

adjustable circulation around airfoils with rounded trailing

edges (and with moving-surface boundary-layer treat-

ment, as already discussed in this section).

Five 16.4%-thick, rounded-trailing-edge airfoil pro-

files were considered for this study, with trailing-edge
radius-to-chord ratios of 0.0068, 0.0045, 0.0027, 0.0013,

and 0.0007 (fig. 5). The geometrical parameters for these

profiles are given in table 2.

The net dissipation at an incidence of 0.1 rad was

found by evaluating the velocity derivatives analytically

and integrating numerically, as described earlier in this

section. The variation in effective drag coefficient with

circulation for these airfoils at R = 1000 is shown in fig-

ure 6. For the elliptical airfoil (case 1), the net dissipation
is minimized for zero circulation. The circulation corre-

sponding to minimum net dissipation increases as the

trailing-edge radius, rTE, is reduced relative to the
leading-edge radius, rL E (fig. 6).

11



Table 2. Parameters for rounded-trailing-edge airfoil

Case

Parameter

1 2 3 4 5

radius, a

offset, _5
LE a radius

TE b radius

rTE/rLE
rTE/C

1.18 1.178 1.172 1.165 1.160

0.000 0.033 0.0613 0.090 0.105

0.0275 0.0368 0.0441 0.0518 0.0551

0.0275 0.0184 0.0110 0.0052 0.0029

1.0 0.500 0.249 0.101 0.0521

0.0068 0.0045 0.0027 0.0013 0.0007

aLE = leading edge

bTE = trailing edge

uJ
a

o

.015 "

.010

.005

rTE/C = 0.0007
0.0013

_0.0027 _

ooo,5 \

0.0068 ",, _ _ _ -

0 I | I i I i
-1.5 -1.0 -.5 0 .5 1.0 1.5

k S

Figure 6. Drag coefficient vs. circulation coefficient; R = 1000,

Yc = O.164, a = O.1rad.

Streamlines and contours of constant dimensionless

dissipation for full circulation (trailing-edge separation)

and for circulation corresponding to minimum dissipation
for the third case are shown in figure 7. For minimum

dissipation conditions, the rear separation point moves

rearward and the separation-stream angle decreases, as the

trailing-edge radius decreases. Figure 8 illustrates how the

kS needed for minimum dissipation varies with rTE/rLE;

this variation is nearly linear on a semilog plot. These

results suggest that the familiar circulation condition for

airfoils with sharp trailing edges can be approached in the

limit as the trailing-edge radius vanishes. The results also

suggest that the minimum dissipation condition associated

with thermodynamic stability is sufficient to uniquely
determine the circulation for airfoils with finite trailing-

edge radii.

Attempts to compare these results with experiment

must take into account the presence of the boundary layer

and the zones of separation near the rounded trailing edge.
For an airfoil with boundary layers, terms associated with

rTE/rLE should have an effect of order l/R, while terms
associated with the ratio of trailing-edge radius to

boundary-la_ayer thickness will have a stronger effect, of
order 1/'VR. Thwaites notes that the Kutta condition,

which is required to avoid a singularity at the trailing edge

of an airfoil in an inviscid fluid and which uniquely

determines the value of circulation, has no counterpart in

the case of viscous flow. Thwaites suggests a circulation
condition for airfoils in viscous flow as the condition that

the rear separation streamlines originate from the trailing

edge at an angle that lies between the extensions of the

upper and lower trailing-edge surfaces (ref. 33).

These results do not demonstrate that the entire field

(irrotational regions and boundary layers) of a real viscous
flow satisfies a condition of stationary dissipation; how-

ever, the value of the dissipation function for any irrota-

tional region will be much less than the value in rotational

regions. Consequently, a condition of minimum net dissi-

pation in a real flow may correspond to the establishment
of irrotational flow to the largest extent possible.

This analysis can be extended to include the effects of

boundary layers, if desired. The association between

thermodynamic stability and minimum net dissipation can
also be extended to examine problems of hydrodynamic

stability, as will be seen in the next section.

12
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HYDRODYNAMIC AND THERMODYNAMIC

STABILITY CHARACTERISTICS OF A LAMINAR

WALL JET

The initial stages of the transition of laminar flow to

turbulence have been extensively studied by means of lin-

earized hydrodynamic stability theory. This analysis has

been performed for many two-dimensional, parallel shear

flows, such as the boundary layer, channel flow, the free

jet (ref. 34), and the wall jet (refs. 35,36). The analysis has

also been extended to nonparallel flows, three-

dimensional flows, and compressible flows. In general,

the theory predicts that many laminar flows are stable

below a critical Reynolds number, Rc, whose value

depends strongly on the velocity profile. Below R c, dis-

turbances are damped. Above R c, disturbances are ampli-
fied exponentially in either space or time at a rate that

depends on the disturbance frequency. At any R > R e,

there is a frequency corresponding to the maximum

amplification rate; this frequency is comparable to the
experimentally observed frequency of unforced distur-

bances in the shear flow. Experimental disturbances in

shear flows with initially low turbulence levels exhibit

good agreement with linearized hydrodynamic stability

theory in regions where the disturbances are amplified

through several orders of magnitude. At high disturbance

levels, the flow may undergo secondary instabilities and a
transition to turbulence.

Viscous laminar flow may also be considered an open

thermodynamic system. Energy transfers within the flow

in the forms of heat conduction and energy dissipation

through viscous stress are governed by the first and sec-

ond laws of thermodynamics, as discussed in the intro-

duction. If gradients in mean velocity exist within the

flow, the system is not in thermodynamic equilibrium and

the entropy production is nonnegligible. Under certain

restrictions, the second law of thermodynamics implies

that the thermodynamic state is stable when the entropy

production is minimized (ref. 7). This thermodynamic

stability condition has been used to examine the hydro-

dynamic stability of fluid motions such as pipe Poiseuille
flow (ref. 37), thermal (Benard) convection (ref. 38), and

transonic flow (ref. 39). However, the understanding of

the extent of the correspondence between hydrodynamic

and thermodynamic stability of fluid motion is not com-

plete and would benefit from further clarification. To this

end, a simple numerical illustration was generated from

the results published by Chun and Schwartz of a stability

analysis of a laminar wall jet (ref. 35). This exercise is
described in the next section.

Wall-Jet Hydrodynamic Stability

In their stability analysis of the laminar wall jet, Chun

and Schwarz predicted a critical Reynolds number of 58,

with amplified disturbances in the form of a double vortex

row similar to a Karman vortex street adjacent to the wall.

They considered only temporally amplified disturbances,

with real wave numbers and complex frequencies. Tsuji
et al. confirmed the Chun and Schwartz results with a

study that also examined spatially amplified disturbances

(real frequencies and complex wave numbers) and veri-

fied the prediction with experiment (ref. 36).

The mean velocity field considered in these studies,

as well as in the present investigation, is a parallel flow

derived from the Glauert similarity solution (ref. 40):

u = 3.1749Umf' (57a)

v = 0 (57b)

y / 81/2 = 0.3955rl (57c)

where

(58a)
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f=g2, , 1
f'= 2gg', g=-_1- g3) (58b)

f =f01), g=g(rl) (58c)

Profilesof thevelocityanditsfirstderivativeareplotted
in figure9.Thedisturbancestreamfunctiontakesthe
formofaconvectingwave,

(_(x,y,t) =(p(y)exp[i(x(x- ct)] (59)
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Figure 9. Profiles of the wall-jet mean velocity and its first
derivative.

The disturbance stream function satisfies the Orr-

Somerfeld equation, the boundary conditions at the wall,

and the conditions far from the wall. The boundary condi-

tions, which define an eigenvalue problem, allow the
complex frequency, o) = (_c, to be determined as a func-

tion of the Reynolds number, R 8, and the real wave
number, (x. The plot by Tsuji and Morikawa (ref. 36) of

the imaginary component coi of the complex frequency is
reproduced in figure I0. Chun and Schwarz presented the

real and imaginary components of the disturbance stream

function for three conditions,

1. o( = 1, R 6 = 30 (stable)

2. o{= 1, R 6 = 58.2 (neutral)

3. o_= 1, R6 = 150 (unstable)

These conditions are indicated in figure 10 and the stream

function components are presented in figure 11. The

stream function components were extended from y/81/2 =

2.4 to y/81/2 = 4.0 with a decaying exponential, as

'1
3

(x 2

1

0 200 400 600 800 1000
R

Figure 10. Stability characteristicsof the idea/wall jet (ref. 36).

described by Chun and Schwarz. A typical disturbance

streamline pattern for the wall jet is shown in figure 12,
which shows the double-row vortex structure characteris-

tic of the wall jet.

Wall-Jet Thermodynamic Stability

The disturbance velocity field was evaluated for these

three conditions in order to compute the viscous dissipa-

tion function, which for incompressible, two-dimensional
flow reduces to

LL x)Loqy) o3y) J (60)

The mean-velocity derivatives, evaluated from the Glauert

solution, are

_---_= 3.1749Umf" (61a)

O_ bY aV
...... 0 (61b)
Ox ay Ox

where

f"= 2(g') 2 + 2gg", g,,= _g2g, (62)

The velocity derivatives of the disturbance, evaluated

from the disturbance stream function at t = 0, are

_U' (_V'

= - --4-= e[o{(Prcos((xx) + c((1)isin(o_x)]-fixoy
(63a)

_u' [o_F'(pr 2

o y=eLay2 dy
(63b)
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Figure 12. Disturbancestreamlinesfor an idea/wall jet; R = 200,

c = 2 (ref. 36).

_x
(63c)

Here, e is a small parameter that is proportional to the

amplitude of the disturbance. Negative values of e are not

permitted because they would violate the boundary condi-
tions on the disturbance stream function. Errors associated

with inaccuracies in the linearized equations for small but

finite amplitude disturbances are neglected here.

The velocity derivatives of the mean and disturbed
flow were used to evaluate the total viscous dissipation,

F [ au"_ 2 _( av'_ 2 ( Ov' _ au' 21

_=_t[i_e--_-xj +zte-_--y o +te-_-x+_yy+e--_-yJ ](64)

This expression was then integrated numerically over the

region 0 < x/51/2 < 4 and 0 < y/51/2 < 2n to evaluate the

net dissipation. For this purpose, the integral was divided

into three terms,

f tl_dAv

Av

Av Av

+ 'tTyJ+t-gx+WJ
(65)

For a given condition of Reynolds number and wave

number, the value of the net dissipation should vary

quadratically with the disturbance amplitude and have

positive curvature everywhere. The variation of net dissi-

pation for the three Reynolds number conditions
examined here is shown in figure 13. The variations of

dissipation for negative values of disturbance amplitude

are shown as dotted lines, since these variations violate

the boundary conditions. If negative amplitudes were

permitted, the corresponding vortical disturbances would

rotate in the sense opposite to the actual disturbances.
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Figure13showsthat for R = 30, the condition asso-

ciated with stable laminar flow, the value of the net dissi-

pation increases with increasing disturbance amplitude.

For R = 30, the minimum value of net dissipation is gen-

erated for vanishing disturbance amplitude, suggesting

that this flow is stable thermodynamically as well as

hydrodynamically. For R = 58, the case of neutral hydro-

dynamic stability, the curve of net dissipation has a hori-

zontal tangent at the origin, suggesting that the flow is

thermodynamically neutral for infinitesimal disturbances

but stable for large disturbances. For R = 150, the net dis-

sipation decreases as the disturbance amplitude increases

from 0, until a minimum value of the net dissipation is

reached at e = 0.005. This suggests that the hydrodynami-

cally unstable mean flow is also thermodynamically

unstable, although the disturbed flow is thermodynami-
cally stable for the value of e = 0.005, at which the net

dissipation is minimized. This situation may correspond to

the nonlinear limit cycle that is sometimes observed in the

real flow. Figure 14 shows a flow visualization of an ini-

tially laminar wall jet at R = 600; the large disturbances

form a stable vortex array for many cycles in the down-

stream direction. Similar patterns form in the downstream
wakes of cylinders or other bluff bodies (ref. 41). Such

vortex arrays in an inviscid fluid show good agreement

between predictions of stable motion and experimental

results. Vortex arrays in a viscous fluid can also be con-

sidered from the standpoint of thermodynamic stability.

This approach may contribute to the understanding of the

discrete tone stabilization of separation-layer and

boundary-layer control. In the next section, measurements

of the velocity field of an unstable, initially laminar wall

jet are used to estimate the components of the dissipation

function in various regions of an unstable jet.

Dissipation in an Unsteady Wall Jet

To further consider dissipation effects in a real flow,

it is convenient to separate the dissipation function into

mean and fluctuating components. The components of

pressure and vorticity are

p=_+p', (o = _+ (t)' (66)

so the dissipation function of equation (22) becomes

= v2 +p')+ +co')2 (67)

and the mean dissipation function is

_I =-2._.HgpV2_+l.tI(_)2 + (-_1 (68)

Figure 14 illustrates the periodic vortex motion of a two-

dimensional wall-jet flow. This jet flow developed from

an initially parabolic profile rather than a self-similar pro-

file, which was considered in the preceding section.
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Figure 13. Netdissipation integrated over0 < X/&l/2 < 2tr and 0 < y/S1/2 < 4.0 vs. disturbance ampfitude;R = 30, 58.2, 150.
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Figure 14. Wall-jet phase-averaged velocity field and flow

visualization; jet height = 0.508 cm, jet width = 10.18 cm, wall

length = 3.81 cm, maximum velocity of the parabolic exit profile =

13.85 re�s, tone frequency = 600 Hz. a) Phase-averaged flow

visualization, b) velocity vectors relative to convecting vortices,

c) vorticity contours.

Woolley and Karamcheti showed that the stability charac-

teristics of nonparallel shear flows are closely related to

those of parallel shear flows (ref. 42). The short wall was

associated with the generation of tones by the jet; this tone

generation significantly reduced the small-disturbance

region by effectively forcing the initial jet region. How-

ever, the observed tone frequencies were approximately

the same as those of the jet without forcing. The condi-

tions for this jet are Um= 13.85 m/s and L/h = 7.5, where

Um is the maximum velocity of the parabolic exit profile,

L is the wall length, and h is the nozzle height. Fig-
ure 14(a) shows a phase-averaged schlieren visualization

record obtained by lightly heating the subsonic nozzle

flow. Figure 14(b) shows the phase-averaged velocity
field, relative to the convecting vortices, and figure 14(c)

depicts the corresponding vorticity field obtained with a
central-differenced curl of the velocity field. The vorticity

is normalized with respect to the maximum exit velocity

and the nozzle height. We measured the velocity with a

single x-wire velocity probe by sampling the probe output

at regular phase intervals, which were determined by a

pressure transducer fixed in the wall (ref. 43). The mea-

surements were further processed to obtain estimates of

the mean and fluctuating components of the dissipation
field.

Relative contributions to the dissipative structure of

the wall jet were estimated by integrating the field vari-
ables in the cross-stream direction. We define

where

II =(_m )2ol-2V2p d(y) (70a)

I2 =(_m )2 1 _2 d(Y 1
(70b)

(70c)

The Laplacian of the pressure was computed from the

divergence of the incompressible, viscous, two-

dimensional momentum equation,

-2V2p= +4 (71)
p to, x) _ _ t_yJ

To estimate the measurement error, the mean square of

the divergence of the velocity was computed:

( h -]2 l'(_u 19v') 2
(72)

This integral should vanish if the flow is two-dimensional
and incompressible, and if measurements of u and v are
accurate.

Figure 15 shows the distributions of I1, 12, I3, Idiv,

and IT for the jet conditions described. The measurement
error indicated by Idly is negligible only upstream of the

wall trailing edge, where the pressure Laplacian term, I1,

is also negligible. The square of the mean vorticity, I2, is

nearly constant in the small-disturbance region, 0 < x/h <

2.5, beyond which it gradually decreases. Within the

large-disturbance region, 2.5 < x/h < 7.5, the net dissipa-

tion gradually increases with streamwise distance. The

mean square of fluctuating vorticity, I3, is negligible in

the initial region, then steadily increases in the large-

disturbance wall region. The decrease in IT beginning at

x/h = 2.5 is consistent.with the decrease in net dissipation

associated with bydrodynamically unstable flow that was

noted in the preceding section.
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These measurements demonstrate a method of

directly measuring dissipative terms in an unsteady flow.

This method can be extended to experimentally determine

a relationship between overall dissipation and variable

parameters such as forcing frequency, and to experimen-

tally search for dissipation extrema.

CONCLUDING REMARKS

Many features of steady viscous fluid motion, such as

the large extent of irrotational flow near streamlined

bodies, are consistent with a thermodynamic interpretation

based on the minimum dissipation of energy or production

of entropy. Observations of this agreement have been

made by various researchers over the last century;
hewever, recent developments in the field of nonequilib-

rium thermodynamics justify further investigation along

these lines. In this report, an exact equation was derived

for the dissipation function of a homogeneous, isotropic,

Newtonian fluid; the equation's terms are associated with

irreversible compression or expansion, wave radiation,

and the square of the vorticity. Simple flows, such as the

incompressible channel flow and the cylindrical vortex,

were identified as minimally dissipative distributions. A

correspondence between hydrodynamic and thermo-

dynamic stability is suggested by calculations and mea-

surements of an initially laminar wall jet. These results

suggest that the theory of nonequilibrium thermodynamics

can serve to unify the understanding of many diverse phe-

nomena in aerodynamics and aeroacoustics.

National Aeronautics and Space Administration
Ames Research Center

Moffett Field, California 94035-1000

June 27, 1990
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